Https :// wigtonphysics .blogspot .com/2018/02/identity-matrix-in-dirac-notation.html Shows |n> = < grad n | X | grad n > and I can see this, but the next step is < grad n | X | grad n > = Sum_{m≠n} < grad n | m> X Hmmmmm. First, let’s look at what’s | Sum_{m,n} < grad n | m> X | - | m> < grad n | officially, A X B = < grad n | X | grad n > = (A X B)i = eps_{ijk} Aj Bk = Aj Bk – Ak Bj so < grad n | X | grad n > = (Aj Bk – Ak Bj )i + ( Ak Bi – Ai Bk )j + ( Aj Bi – Ai Bj )k OK, If Sum over all, with m = n, then Sum_{m & n} < grad n | m> X = (Aj Bk – Ak Bj )i + ( Ak Bi – Ai Bk )j + ( Aj Bi – Ai Bj )k + (Bj Bk – Bk Bj )i + ( Bk Bi – Bi Bk )j + ( Bj Bi – Bi Bj )k + (Aj Ak – Ak Aj )i + ( Ak Ai – Ai Ak )j + ( Aj Ai – Ai Aj )k Finally we can see that this is < grad n | X | grad n > = Sum_{m ≠ n} < grad n | m> X